Synaptic Signaling by All-Trans Retinoic Acid in Homeostatic Synaptic Plasticity
نویسندگان
چکیده
Normal brain function requires that the overall synaptic activity in neural circuits be kept constant. Long-term alterations of neural activity lead to homeostatic regulation of synaptic strength by a process known as synaptic scaling. The molecular mechanisms underlying synaptic scaling are largely unknown. Here, we report that all-trans retinoic acid (RA), a well-known developmental morphogen, unexpectedly mediates synaptic scaling in response to activity blockade. We show that activity blockade increases RA synthesis in neurons and that acute RA treatment enhances synaptic transmission. The RA-induced increase in synaptic strength is occluded by activity blockade-induced synaptic scaling. Suppression of RA synthesis prevents synaptic scaling. This form of RA signaling operates via a translation-dependent but transcription-independent mechanism, causes an upregulation of postsynaptic glutamate receptor levels, and requires RARalpha receptors. Together, our data suggest that RA functions in homeostatic plasticity as a signaling molecule that increases synaptic strength by a protein synthesis-dependent mechanism.
منابع مشابه
The effect of bilateral intrahippocampal injection of all–trans retinoic acid on spatial learning in adult male rats.
Introduction: Previous studies have shown that vitamin A and its derivatives such as retinoid and all-trans retinoic acid have a crucial role in memory, learning and synaptic plasticity. The receptors of vitamin A are seen in different parts of the brain such as hippocampus, where vitamin A has an important role in learning. In this study, the effect of intrahippocampal (CA1) injection of al...
متن کاملRole of retinoic acid signaling in homeostatic synaptic plasticity By
Role of retinoic acid signaling in homeostatic synaptic plasticity Homeostatic synaptic plasticity (HSP) is a form on non-Hebbian plasticity that allows neurons to sense their global level of activity and modulate their own function to keep firing rate within a working range. In particular, chronic elevation or reduction of network activity activates compensatory mechanisms that modulate synapt...
متن کاملDecrease in calcium concentration triggers neuronal retinoic acid synthesis during homeostatic synaptic plasticity.
Blockade of synaptic activity induces homeostatic plasticity, in part by stimulating synthesis of all-trans retinoic acid (RA), which in turn increases AMPA receptor synthesis. However, the synaptic signal that triggers RA synthesis remained unknown. Using multiple activity-blockade protocols that induce homeostatic synaptic plasticity, here we show that RA synthesis is activated whenever posts...
متن کاملCalcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.
Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticit...
متن کاملConditional RARα knockout mice reveal acute requirement for retinoic acid and RARα in homeostatic plasticity
All-trans retinoic acid (RA) plays important roles in brain development through regulating gene transcription. Recently, a novel post-developmental role of RA in mature brain was proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent of transcriptional regulation. RA synthesis was induced when excitatory synaptic transmission was chronically blocked, and RA the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 60 شماره
صفحات -
تاریخ انتشار 2008